A Facile Asymmetric Synthesis of 1,2,3-Substituted Indenes

Karen R. Romines, ${ }^{*, \dagger}$ Kristine D. Lovasz, Stephen A. Mizsak, J eanette K. Morris, Eric P. Seest, Fusen Han, J ohn Tulinsky, Thomas M. J udge, and Ronald B. Gammill ${ }^{\ddagger}$

Structural, Analytical, and Medicinal Chemistry Research, Pharmacia \& Úpjohn, Kalamazoo, MI, 49001

Received September 29, 1998

Introduction

The indene nucleus has been known for many years, ${ }^{1}$ and highly substituted indenes have recently been prepared by numerous methods. These include manganesemediated cyclization of aryl ketones and acetylenes, ${ }^{2}$ rearrangement of arylcyclopropenes, ${ }^{3}$ sigmatropic ${ }^{4}$ or free-radical ${ }^{5}$ cyclization of phenylvinyl derivatives, and Lewis acid mediated cyclization of α-oxoketenedithioacetal/phenyl Grignard adducts. ${ }^{6}$ These methods, however, do not allow for stereocontrol of a C-1 stereogenic center. Asymmetric indenes have previously been prepared using resolution strategies. ${ }^{7}$ Recently, we have developed an efficient asymmetric synthesis of 1,2,3substituted indenes (1) from readily available α, β unsaturated acids. Our strategy involved the use of a chiral imide derivative, which through standard protocols enabled us to sel ectively form the C-1 stereogenic center of the indene nucleus.

1

Results and Discussion

Our indene synthesis begins by establishing the asymmetric center at what will become the C-1 position via an organocuprate addition to an unsaturated imide

[^0](Scheme 1). The desired unsaturated imide substrate 3 was prepared by addition of the lithium salt of (S)-4phenyloxazolidinone (2) to (E)-pentenoyl chloride. Addition of the aryl cuprate derived from 3-[bis(trimethylsilyl)amino]phenylmagnesium chloride ${ }^{8}$ to $\mathbf{3}$ then gave Michael adduct 4 as a single diastereomer after bisbenzylation and recrystallization. ${ }^{9}$ Introduction of an acetyl group to 4 was accomplished via formation of the potassium enolate of 4 with potassium bis(trimethylsilyl)amide, followed by treatment of that enolate with $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ and subsequent addition of acetyl chloride to yield 5 as a single diastereomer. ${ }^{10 a}$ Assignment of the absolute stereochemistry of both asymmetric centers was based on literature precedent. ${ }^{11,12}$ Synthesis of indene 6 was completed via the facile cyclization of methyl ketone 5 in the presence of titanium tetrachloride and a tertiary amine, and the chiral auxiliary was readily cleaved with lithium peroxide to produce 1. Both the cyclization and oxazolidinone cleavage steps proceeded without racemization of the C-1 stereogenic center. ${ }^{13}$

We examined this intriguing and quite facile cyclization of the methyl ketone to the indene nucleus in some detail. Our standard cyclization conditions required treatment of 5 with $1.0 \mathrm{M} \mathrm{TiCl}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 equiv), followed by addition of diisopropylethylamine (1.2 equiv) at low temperatures. The reaction mixture was then warmed to ambient temperature to effect complete cyclization. After 1.5 h at $-15^{\circ} \mathrm{C}$, conversion was 15%. In the same time period at $0^{\circ} \mathrm{C}$, conversion proceeded to 52%, and at ambient temperatures, 60% conversion was realized. HPLC studies of quenched aliquots from the reaction mixture showed complete consumption of starting material after 3.75 h at ambient temperature. The only product from this reaction was the desired indene, and when conversion was not complete, only starting material was recovered.

The relative stereochemistry of the two centers established by the cuprate addition and the acylation steps was crucial. Cyclization did not occur when the substituents of the methyl ketone at C-2 and C-3 were syn to one another. F or example, in the case of methyl ketone 8, ${ }^{10 a}$ even after stirring at room temperature for 20 h

(8) Purchased from Aldrich Chemical Co.

(9) F or reviews, see: (a) Rossiter, B. E.; Swinge, N. M. Chem. Rev. 1992, 92, 771. (b) Nicolas, E.; Russell, K. C.; Hruby, V. J. J . Org. Chem. 1993, 58, 766.
(10) (a) A full account of this work, which was initially described in ref 10b, is currently under revision and will appear shortly. (b) J udge, T. M.; Phillips, G.; Morris, J. K.; Lovasz, K. D.; Romines, K. R.; Luke, G. P.; Tulinsky, J .; Tustin, J. M.; Chrusciel, R. A.; Dolak, L. A.; Mizsak, S. A.; Watt, W.; Morris, J.; Vander Velde, S. L.; Strohbach, J. W.; Gammill, R. B. J. Am. Chem. Soc. 1997, 119, 3627.
(11) (a) Nicholas, E.; Dharanipragada, R.; Toth, G.; Hruby, V. J . Tetrahedron Lett. 1989, 30, 6845. (b) Qian, X.; Russell, K. D.; Boteju, L. W.; Hruby, V. J. Tetrahedron Lett. 1995, 51, 1033.
(12) Evans, D. A.; Urpi, F.; Somers, T. C.; Clark, J . S.; Bilodeau, M. T. J. Am. Chem. Soc. 1990, 112, 8215.
(13) To evaluate the stability of the stereogenic center of $\mathbf{6}$ and $\mathbf{1}$ ($R_{1}=E t, R_{2}=M e$), the enantiomers of these compounds were prepared from (R)-4-phenyloxazolidinone, which is the enantiomer of 2 (Scheme 1). Analytical chiral HPLC indicated that 6, $1\left(R_{1}=E t, R_{2}=M e\right)$, and their enantiomers were of $>99 \%$ ee. Compounds 6 ($t_{R} 18.51 \mathrm{~min}$) and its enantiomer 22 ($\mathrm{t}_{\mathrm{R}} 22.20 \mathrm{~min}$) were analyzed using a $0.46 \times 25 \mathrm{~cm}$ Whelk-O column (elution of $0.5 \mathrm{~mL} / \mathrm{min}$ with EtOH , detection at 380 $n m$). Compounds 1 ($\left.R_{1}=E t, R_{2}=M e\right)\left(t_{R} 16.78 \mathrm{~min}\right)$ and its enantiomer 23 ($t_{R} 14.70 \mathrm{~min}$) were analyzed using a $0.46 \times 25 \mathrm{~cm}$ Chiralcel OD-H column (elution of $0.5 \mathrm{~mL} / \mathrm{min}$ with 5% 2-propanol/ 0.5% acetic acid/heptane, detection at 353 nm).

Scheme $1^{\text {a }}$

${ }^{\text {a }}$ (a) n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$; then, $\mathrm{CIC}(\mathrm{O}) \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}, 82 \%$; (b) CuBr-Me ${ }_{2} \mathrm{~S}, 3-\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right] \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{MgBr}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 71 \%$; (c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$, $\mathrm{BnBr}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 81 \%$; (d) KHMDS, $\mathrm{MgBr}_{2}-\mathrm{OEt}_{2}$; then, AcCl , 61%; (e) $\mathrm{TiCl}_{4}, \mathrm{EtN}(i-\mathrm{Pr})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to rt, 63%; (f) $\mathrm{H}_{2} \mathrm{O}_{2}$, $\mathrm{LiOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 53 \%$.

Scheme $\mathbf{2}^{\text {a }}$

${ }^{\text {a }}$ (a) $\mathrm{TiCl}_{4}, \mathrm{MeOH}, 83 \%$; (b) LDA, THF, $-78{ }^{\circ} \mathrm{C}$; then, $\mathrm{AcCl}, 78 \%$; (c) $\mathrm{TiCl}_{4}, \mathrm{EtN}(i-\mathrm{Pr})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 30 \%$ of $\mathbf{1 1}, 43 \%$ of $\mathbf{1 0}$.
under the standard reaction conditions, there was no evidence of conversion to indene (NMR, HPLC, MS, or TLC) (eq 1). A similar result was also noted with the β-keto ester 10, which was prepared from the imide $9 a^{10 \mathrm{~b}}$ (Scheme 2). First, the chiral auxiliary was converted to the methyl ester 9b. ${ }^{14}$ In the subsequent acylation step, the existing stereogenic center exerted some stereochemical influence and the β-keto ester 10 was formed as a 3.25:1 mixture of diastereomers. Treatment of this mixture with TiCl_{4} and Hunig's base yielded indene 11 and

[^1]recovered β-keto ester 10; however, the ratio of diastereomers in the recovered β-keto ester was reversed to $1: 2.5$. This result indicated a very substantial rate difference between cyclization of the major diastereomer from the acylation, in which the substituents at C-2 and C-3 are anti, and cyclization of the minor diastereomer, in which the $\mathrm{C}-2$ and $\mathrm{C}-3$ substituents are syn.

(a) $\mathrm{Fe}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{MeCN}$; (b) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$, reflux, 73% for 2 steps; (c) CuBr-Me ${ }_{2} \mathrm{~S}, \mathrm{EtMgBr}$, THF, $-10^{\circ} \mathrm{C}, 74 \%$; (d) KHMDS, $\mathrm{MgBr}_{2}-\mathrm{OEt}_{2}$; then, $\mathrm{AcCl},-78^{\circ} \mathrm{C}, 58 \%$; (e) $\mathrm{TiCl}_{4}, \mathrm{EtN}(i-\mathrm{Pr})_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to r .

We also investigated the electronic influence of the substituent on the aryl ring. Initially, we used a methyl ketone with a p-N,N-bisbenzyl group which introduces a convenient site for further chemistry. To explore the role of the para substituent, we synthesized substrates with an electronically neutral group (H, 12a), an electronwithdrawing group ($\mathrm{F}, \mathbf{1 2 b}$), or a mildly electron donating group (OMe , 12c) at the para position (eq 2). When submitted to our standard protocol, all of these substrates failed to produce the cyclization products, and only starting materials were recovered. These results illustrate the significant electronic contributions of the para-substituted amino group.
$3 \xrightarrow{a, b}$

12b $X=F$
12c $X=O M e$
(a) $\mathrm{CuBr}-\mathrm{Me}_{2} \mathrm{~S}, \mathrm{ArMgBr}, \mathrm{THF}$; (b) KHMDS, $\mathrm{MgBr}_{2}-\mathrm{OEt}_{2}$; then, AcCl ;
(c) $\mathrm{TiCl}_{4}, \mathrm{EtN}(i-\mathrm{Pr})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to rt .

One feature of this new synthetic route is the ability to modify the C-1 substituent of the indene. We chose to acylate the chiral oxazolidinones to give 13a,b so that the C-1 substituent could be installed via condensation of $\mathbf{1 3} \mathbf{a}, \mathbf{b}$ with the appropriate aldehyde (Scheme 3). In all cases, Michael addition and bis-benzylation proceeded smoothly. For the cyclopropyl derivative 15c, the acylation and cyclization steps then produced indene 18. It was interesting to note that use of a tert-butyl substituent precluded C-acylation. The only product observed with 15a was the O-acylated derivative 16a. Use of a benzyl oxazolidinone as the chiral source did not sufficiently relieve the steric strain to alter the course of the acylation step, and 16b was the only product observed.
A potentially important feature of this methodology was the ability to modify the C-3 substituent of the

Scheme 3^{a}

${ }^{\mathrm{a}}$ (a) $\mathrm{TiCl}_{4}, \mathrm{EtN}(i-\mathrm{Pr})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; then, $\mathrm{R}_{2} \mathrm{CHO}, \mathrm{EtN}(i-\mathrm{Pr})_{2},-78{ }^{\circ} \mathrm{C}$ to ri; (b) CuBr-Me ${ }_{2} \mathrm{~S}, 3-\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right] \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{MgBr}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ (c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$, $\mathrm{BnBr}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) KHMDS, $\mathrm{MgBr}_{2}-\mathrm{OEt}_{2}$; then, AcCl ; (e) TiCl_{4}, $\operatorname{EtN}(i-\mathrm{Pr})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to rt.
indene. By simply choosing different acid chlorides, indenes with different C-3 substituents can be synthesized. F or example, treatment of the enolate of β-ketoimide $\mathbf{4}$ with benzoyl chloride afforded the phenyl ketone intermediate in good yield (eq 3). Cydization under standard conditions then readily gave the 3 -phenyl indene derivative 19.

(a) $\mathrm{KHMDS}, \mathrm{MgBr}_{2}-\mathrm{OEt}_{2}$; then, $\mathrm{PhC}(\mathrm{O}) \mathrm{Cl}, 62 \%$; (b) $\mathrm{TiCl}_{4}, \mathrm{EtN}(i-\mathrm{Pr})_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 62 \%$

A variation of the $\mathrm{C}-3$ substitution step allowed us to extend our strategy to the preparation of 3-aminoindanes. Treatment of ketoimide 9a at $-78{ }^{\circ} \mathrm{C}$ with TiCl_{4}, Hunig's base, and the Vilsmeier reagent provided the novel aminoindans 20a and 20b in a 2:1 ratio (Scheme 4). ${ }^{15}$ Interestingly, use of Vilsmeier reagent to form indans was not sterically limited. Using the tert-butyl intermediate $\mathbf{1 5 a}$, we readily obtained 21a and 21b.

Scheme 4^{a}

We have developed a simple and efficient asymmetric route to prepare highly substituted indenes. Our chiral sources are the readily available phenyloxazolidinones, and the stereogenic center is efficiently prepared via a Michael addition to a chiral imide. Ambient temperatures and Lewis acid conditions provide an attractive, mild procedure for the cyclization to indene. Both the cyclization and subsequent removal of the chiral auxiliary take place without corruption of the stereogenic center. This procedure also provides flexibility for indene substitution, particularly at the $\mathrm{C}-3$ position. Furthermore, this route can be readily modified to yield 1-aminoindans.

Experimental Section

Melting points are uncorrected. NMR spectra were recorded using tetramethylsilane as an internal standard. Flash chromatography was performed on 230-400 mesh silica gel 60.
(4S)-3-[[(1S)-6-[Bis(phenylmethyl)amino]-1-ethyl-3-meth-yl-1H-inden-2-yl]carbonyl]-4-phenyl-2-oxazolidinone (6). A solution of $5^{100,16}(0.200 \mathrm{~g}, 0.357 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$, and titanium tetrachloride (0.36 mL of a 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.357 \mathrm{mmol}$) was added dropwise. Diisopropylethylamine ($0.075 \mathrm{~mL}, 0.428 \mathrm{mmol}$) was added, and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 80 min and then allowed to warm to room temperature over 3.5 h . The mixture was quenched with half-saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}, 3 \mathrm{~mL})$ and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The aqueous layer was extracted with three portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})$, water, and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to give 0.182 g of crude material. Column chromatography on silica gel (elution with $50-80 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes) afforded 0.123 g (63%) of the title compound as a yellow solid: $\mathrm{mp} 159-162{ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)-148 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-$ $7.20(\mathrm{~m}, 16 \mathrm{H}), 6.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.69(\mathrm{dd}, \mathrm{J}=2.2,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.64(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.67(\mathrm{~m}, 5 \mathrm{H}), 4.31(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.07$ (br s, 1 H), $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H}), 0.38$ (br

[^2]$\mathrm{s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,153.5,150.3$, 149.9, 138.2, 137.6, 134.1, 132.7, 129.1, 128.8, 128.7, 127.4, 127.1, $126.7,122.3,111.4,107.5,69.4,58.9,54.6,50.5,23.4,13.0,8.8$ ppm; IR (mull) 1778, $1655 \mathrm{~cm}^{-1}$; MS (EI) m/ z 542 (M+•). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 79.68; H, 6.32; $\mathrm{N}, 5.16$. Found: C, 79.67; H, 6.47; N, 5.20.
(1S)-6-[B is(phenylmethyl)amino]-1-ethyl-3-methyl-1H-indene-2-carboxylic Acid (1, $\mathbf{R}_{\mathbf{1}}=\mathbf{E t}, \mathbf{R}_{\mathbf{2}}=\mathbf{M e}$). A solution of $6(0.486 \mathrm{~g}, 0.90 \mathrm{mmol})$ in THF (10 mL) was diluted with water (5 mL) and cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. Hydrogen peroxide (1.5 mL of a 30% aqueous solution, 13.4 mmol) and lithium hydroxide (5.6 mL of a 0.8 M aqueous solution, 4.5 mmol) were added dropwise, and the resulting mixture was stirred at ambient temperature for 19 h . The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$, quenched with $\mathrm{Na}_{2} \mathrm{SO}_{3}(10.3 \mathrm{~mL}$ of a 1.3 M solution, 13.4 mmol), and extracted with two $50-\mathrm{mL}$ portions of EtOAc. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated to give 0.605 g of yellow oil. Column chromatography on 35 g silica gel (elution with $10-30 \%$ EtOAd hexanes) yielded 0.186 g (53\%) of the title compound as a yellow foam: $[\alpha]^{25}$ D $\left(\mathrm{c} \mathrm{0.9}, \mathrm{CHCl}_{3}\right)+86 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.38-7.29 (m, 11 H$), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.74 (br s, 4 H), 3.73 (br s, 1 H$), 2.53$ (s, 3 H), 2.16-2.06 (m, 1 $\mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 0.47(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,155.4,151.1,150.1,138.2,134.2,128.8$, 128.2, 127.1, 126.7, 122.4, 111.3, 107.7, 54.6, 49.9, 23.7, 12.9, $8.5 \mathrm{ppm} ;$ IR (drift) 2961, $1652 \mathrm{~cm}^{-1}$; MS (EI) m/z 397 (M+•); HRMS (EI) calcd 397.2042, found 397.2044. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{2}$: C, 81.58; H, 6.85; N, 3.52. Found: C, 81.21; H, 6.87; N, 3.56.
(S)-3-[Bis(phenylmethyl)amino]- β-ethylbenzenpropanoic Acid Methyl Ester (9b). Titanium tetrachloride (6.64 mL , 60.4 mmol) was added dropwise to methanol (150 mL) in an ice bath. The resulting mixture was stirred at ambient temperature for 2 h , and then $9 \mathrm{a}^{10 \mathrm{~b}}(9.5 \mathrm{~g}, 18.3 \mathrm{mmol})$ was added. The mixture was warmed to reflux overnight and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ and extracted with EtOAc. The organic layer was washed with saturated $\mathrm{NaHCO}_{3}(a q)$ and concentrated. Column chromatography on 200 g of silica gel (elution with $5-20 \%$ EtOAc/hexanes) gave 5.91 g (83%) of the title compound as an oil: $[\alpha]^{25}$ D (c 0.5, MeOH) +16 ; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.09$ (appt, J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.58(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.51(\mathrm{~m}$, $2 \mathrm{H}), 4.62(\mathrm{~s}, 4 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~d}, \mathrm{~J}$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 2 \mathrm{H}), 0.69(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; IR (liquid) $1738 \mathrm{~cm}^{-1}$; MS (EI) m/z 387 (M+•); HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{2}$ 387.2198, found 387.2196. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{2}$: C, 80.59; H, 7.54; N, 3.61. Found: C, 80.71; H, 7.69; N, 3.77.
(β S)-Methyl α-Acetyl-3-[bis(phenylmethyl)amino]- β-ethylbenzenepropanoate (10). A solution of 9b (0.775 g, 2.0 mmol) in THF (5 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$, and LDA (1.1 mL of a 2.0 M solution, 2.2 mmol) was added dropwise over 2 min . The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min and then transferred via cannula over 10 min to a solution of acetyl chloride ($1.4 \mathrm{~mL}, 19.7 \mathrm{mmol}$) in 5 mL of THF at $-78^{\circ} \mathrm{C}$. After an additional 10 min of stirring, the reaction mixture was allowed to warm to room temperature over 10 min , diluted with EtOAc, and washed with saturated NaHCO_{3} (aq) until the aqueous layer was neutral. The organic layer was then washed with water and concentrated to give 1.05 g of a greenish oil. Column chromatography on 100 g of silica gel (elution with $5-30 \%$ EtOAc/hexanes) gave 0.67 g (78\%) of the title compound: $m p 86-103^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}(\mathrm{c} 1.1, \mathrm{MeOH})+30 ;{ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.08(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.80-6.57 (m, 3 H), $4.62(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 3.72(\mathrm{t}, \mathrm{J}=4.1 \mathrm{~Hz}, 3 \mathrm{H})$, 3.38 (s, 1 H$), 3.28-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H})$, 1.58-1.56 (m, 2 H), 1.55-1.37 (m, 1 H), 0.60-0.55 (m, 3 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.8,202.5,169.3,168.5,141.6$, $138.6,129.4,129.1,128.6,128.5,128.3,128.2,127.0,125.4,116.5$, 113.0, 111.3, 66.6, 66.0, 54.4, 52.4, 52.1, 47.7, 47.3, 29.8, 29.7, 27.4, 26.8, 11.7, 11.5 ppm ; IR (mull) $1740,1714 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 429\left(\mathrm{M}^{+\cdot}\right)$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{3}: \mathrm{C}, 78.29 ; \mathrm{H}, 7.27$; N , 3.26. Found: C, 78.29; H, 7.33; N, 3.33.
(R)-Methyl 6-[Bis(phenylmethyl)amino]-1-ethyl-3-meth-yl-1H-indene-2-carboxylate (11). Using the procedure described above for 6, $0.141 \mathrm{~g}(30 \%)$ of the title compound was
prepared from 10 and 0.185 g (43\%) of starting material was recovered. Physical characteristics for 11: mp 104-106 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}$ $\left(\mathrm{C} 0.9, \mathrm{CHCl}_{3}\right)-40 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.35-7.24(\mathrm{~m}, 11 \mathrm{H})$, 6.84-6.75 (m, 2 H$), 4.71(\mathrm{~s}, 4 \mathrm{H}), 3.79$ (s, 3H), 3.67 (br s, 1 H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 2 \mathrm{H}), 0.41(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.5,152.3,150.5,149.9,138.4,134.5$, $129.2,128.7,127.1,126.8,121.9,111.6,108.1,54.9,50.6,50.2$, 24.0, 12.6, 8.6 ppm ; IR (mull) $1689 \mathrm{~cm}^{-1}$; UV $\lambda_{\max } 359$ (ϵ 26100, MeOH); MS (EI) m/z 411 ($\mathrm{M}^{+\bullet}$). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{2}$: C, 81.72; H, 7.10; N, 3.40. Found: C, 81.49; H, 7.12; N, 3.52.
(4S)-4-Phenyl-3-[(3R)-3-phenylpentanoyl]-1,3-oxazolidin-2-one (24a). A solution of $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}(2.01 \mathrm{~g}, 9.78 \mathrm{mmol})$ in 18 mL of THF was cooled to $-50^{\circ} \mathrm{C}$, and phenylmagnesium bromide $(9.8 \mathrm{~mL}$ of a 1.0 M solution, 9.78 mmol) was added dropwise over 15 min . The reaction mixture was stirred an additional 30 min at ca. $-20^{\circ} \mathrm{C}$. The reaction mixture was then placed in an ice bath, and a solution of $3^{10 a, 16}(1.999 \mathrm{~g}, 8.15 \mathrm{mmol})$ in 6 mL of THF was added dropwise over 9 min . The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 35 min and then quenched with 50 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}, \mathrm{pH}=8)$. Extraction with 100 mL of ether gave an organic layer which was washed with three $50-\mathrm{mL}$ portions of $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated aq, $\mathrm{pH}=8$), washed with water, dried over MgSO_{4}, filtered, and concentrated to give 2.662 g of yellow solid. Crystallization from $\mathrm{Et}_{2} \mathrm{O}$ afforded 1.845 g (70\%) of the title compound as white crystals: $m p 68-70^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}$ (c $\left.0.9, \mathrm{CHCl}_{3}\right)+60 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~m}, 8 \mathrm{H})$, $6.98-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{dd}, \mathrm{J}=4.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{t}, \mathrm{J}=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, \mathrm{J}=4.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 1 \mathrm{H})$, $3.13-3.06(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 2 \mathrm{H}), 0.76(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3$ H) ppm; ${ }^{13} \mathrm{C}$ NMR (300 M Hz, CDCl_{3}) $\delta 171.6,153.5,143.5,138.5$, 128.9, 128.2, 127.6, 126.2, 125.3, 69.7, 57.4, 43.5, 41.3, 29.1, 11.7 ppm; IR (mull) 1788, $1697 \mathrm{~cm}^{-1}$; MS (EI) m/z 323 (M ${ }^{+\bullet) . ~ A n a l . ~}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{C}, 74.28 ; \mathrm{H}, 6.55 ; \mathrm{N}, 4.33$. F ound: C, 74.24; H, 6.69; N, 4.36.
(2R)-1-[(4S)-2-0xo-4-phenyl-1,3-oxazolidin-3-yl]-2-[(1R)-1-phenylpropyl]-1,3-butanedione (12a). A solution of $\mathrm{MgBr}_{2}{ }^{\text {. }}$ $E t_{2} \mathrm{O}(0.661 \mathrm{~g}, 2.56 \mathrm{mmol})$ and 24a ($0.754 \mathrm{~g}, 2.33 \mathrm{mmol}$) in THF (5 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$, and potassium bis(trimethylsilyl)amide (7 mL of a 0.5 M solution in toluene, 3.5 mmol) was added dropwise over 7 min . The resulting mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 30 min , and then a solution of acetyl chloride $(0.25 \mathrm{~mL}$, 3.5 mmol) in THF (5 mL) was added dropwise over 3 min . The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min and then allowed to slowly warm to ambient temperature overnight. The reaction mixture was then quenched with half-saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}, 5 \mathrm{~mL})$ and extracted with EtOAc (100 mL). The organic layer was washed with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq}, 25 \mathrm{~mL}$), water (25 mL), and brine (10 mL), dried over MgSO_{4}, filtered, and concentrated to give 1.105 g of yellow solid. Recrystallization from EtOAc/hexanes gave 0.319 g (37\%) of the title compound as yellow crystals: mp 128-131 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)+3 ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 7.43-7.21(\mathrm{~m}, 10 \mathrm{H}), 5.48$ (dd, J = $3.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{app} \mathrm{t}, \mathrm{J}=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, \mathrm{J}=3.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dt}, \mathrm{J}=4.1,10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,153.7,140.1,138.1$, 129.1, 128.7, 128.6, 127.0, 125.5, 70.0, 64.4, 57.8, 47.4, 31.0, 26.8, 11.7 ppm; IR (mull) 1789, 1723, $1687 \mathrm{~cm}^{-1}$; MS (EI) m/z 365 $\left(\mathrm{M}^{+\bullet}\right)$; HRMS (EI) calcd 365.1627, found 365.1604. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 72.31; H, 6.34; N, 3.83. Found: C, 71.93; H, 6.43; N, 3.99.
(S)-3-Acetyl-4-phenyl-2-oxazolidinone (13a). A solution of (S)-4-phenyl-2-oxazolidinone ($10.16 \mathrm{~g}, 62.2 \mathrm{mmol}$) in THF (350 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$, and n-butyllithium (39 mL of a 1.6 M solution, 62.2 mmol) was added dropwise over 15 min . The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for an additional 15 min ; then a solution of acetyl chloride ($4.9 \mathrm{~mL}, 68.4 \mathrm{mmol}$) in THF $(25 \mathrm{~mL})$ was added dropwise over 5 min . The reaction mixture was then allowed to warm to room temperature and stirred overnight. The reaction mixture was quenched by pouring into saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}, 250 \mathrm{~mL})$ and extracted with EtOAc (250 $\mathrm{mL})$. The aqueous layer was extracted with additional EtOAc $(100 \mathrm{~mL})$; then the organic layers were combined, dried over MgSO_{4}, filtered, and concentrated to give 12.88 g of a white solid. Recrystallization from EtOAc/hexanes gave 9.436 g (74\%) of the title compound as white crystals: $\mathrm{mp} 90-91^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)+56 ;{ }^{1} \mathrm{H} N \mathrm{NR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.28(\mathrm{~m}, 5 \mathrm{H})$,
5.42 (dd, J $=3.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{app} \mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$ 4.28 (dd, J $=3.5,8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.53 (s, 3 H) ppm; ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.5,153.7,138.8,129.0,128.6,125.8,69.8,57.2$, 23.6 ppm; IR (mull) 1772, $1701 \mathrm{~cm}^{-1}$; MS (EI) m/z 205 (${ }^{+\bullet \bullet}$), 162, 161, 145, 132, 119, 105, 104, 91, 77, 51. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}: \mathrm{C}, 64.38 ; \mathrm{H}, 5.40 ; \mathrm{N}, 6.82$. Found: C, 64.22; H, 5.50; N, 6.77.
(S)-3-(1-0xo-4,4-dimethyl-2-pentenyl)-4-phenyl-2-oxazolidinone (14a). A solution of 13a ($5.093 \mathrm{~g}, 24.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(125 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$, and $\mathrm{TiCl}_{4}(2.9 \mathrm{~mL}, 26.0$ mmol) was added dropwise over 2 min . N, N-Diisopropylethylamine ($4.8 \mathrm{~mL}, 27.3 \mathrm{mmol}$) was added dropwise over 5 min , and the resulting mixture was stirred for 40 min at $-78{ }^{\circ} \mathrm{C}$. tertButylcarboxaldehyde ($2.7 \mathrm{~mL}, 25.1 \mathrm{mmol}$) was then added dropwise over 3 min , and diisopropylethylamine ($4.8 \mathrm{~mL}, 27.3$ mmol) was added dropwise over 2 min . The resulting mixture was allowed to warm to room temperature over 1 h and then poured into water (100 mL) and stirred for 15 min . The organic layer was then separated, washed with $1: 1$ saturated NaHCO_{3} (aq)/brine (100 mL), dried over MgSO_{4}, filtered, and concentrated to give 6.922 g of a yellow solid. Recrystallization from EtOH yielded $4.707 \mathrm{~g}(69 \%)$ of the title compound: $\mathrm{mp} 138-142{ }^{\circ} \mathrm{C}$; $[\alpha]^{25}$ D $\left(c 1.1, \mathrm{CHCl}_{3}\right)+103 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-$ $7.30(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.49$ (dd, J $=3.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.28 (dd, J $=3.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.09(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,162.1,154.2,139.6,129.6,129.1,126.4$, 116.1, 70.3, 58.2, 34.8, 29.0 ppm; IR (mull) 1777, 1686, 1633 cm^{-1}; MS (EI) m/z 273 (M+•); HRMS (EI) calcd 273.1365, found 273.1362.
(4S)-3-[(3S)-3-[3-(Dibenzylamino)phenyl]-4,4-dimethyl-pentanoyl]-4-phenyl-1,3-oxazolidin-2-one] (15a). Using the procedure described above for 24a, 4.804 g of (4S)-3-[(3S)-3-(3ami nophenyl)-4,4-dimethyl pentanoyl]-4-phenyl-1,3-oxazol idin-2-one (25a) was prepared from 14a. This material was used immediately without further purification. A solution of 25a (4.8 g), potassium carbonate ($3.8 \mathrm{~g}, 27.8 \mathrm{mmol}$), and benzyl bromide ($3.3 \mathrm{~mL}, 27.8 \mathrm{mmol}$) in acetonitrile (20 mL) was heated to reflux for 1.25 h . The reaction mixture was then diluted with EtOAc (100 mL) and washed with two 30-mL portions of water. The organic layer was dried over MgSO_{4}, filtered, and concentrated to give 7.295 g of a black oil. Column chromatography on 100 g of silica gel (elution with 3-20\% EtOAc/hexanes) gave 1.068 g (18\% for two steps) of the title compound as an off-white solid: mp 156-158 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}$ (c 1.0, DMSO) $+42 ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO-d ${ }_{6}$) $\delta 7.25-7.19(\mathrm{~m}, 10 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-$ $6.94(\mathrm{~m}, 3 \mathrm{H}), 6.64-6.58(\mathrm{~m}, 3 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~d}, \mathrm{~J}=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.36$ (dd, J $=3.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.59(\mathrm{~m}, 5 \mathrm{H})$, 4.07-3.95 (m, 2 H), 2.78-2.65 (m, 2 H), $0.63(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d ${ }_{6}$) δ 171.6, 153.7, 147.4, 141.3, 139.2, $128.4,128.3,127.8,127.0,126.5,124.5,110.4,69.8,56.7,54.4$, 52.2, 33.5, 33.0, 27.6 ppm ; IR (mull) 1775, $1714 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 546\left(\mathrm{M}^{+\bullet}\right)$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 79.09 ; \mathrm{H}, 7.01$; N, 5.12. Found: C, 79.11; H, 7.02; N, 5.08.
(Z,3S)-3-[3-(Dibenzylamino)phenyl]-4,4-dimethyl-1-[(4S)-2-0x0-4-phenyl-1,3-oxazolidin-3-yl]-1-pentenyl Acetate (16a). Using the procedure described above for 12a, 0.443 g (48\%) of the title compound was prepared from 15a: $[\alpha]^{25}$ D (c 1.0, MeOH) $+6 ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d 6) $\delta 7.37-7.22(\mathrm{~m}, 15 \mathrm{H}), 6.88$ (appt, J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H})$, $6.24(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.12(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=10.7$
$\mathrm{Hz}, 1 \mathrm{H}), 4.73-4.65(\mathrm{~m}, 5 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~d}, \mathrm{~J}=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 167.3,153.8,147.3,141.5,139.2,138.1,135.5$, $128.7,128.3,127.7,126.8,126.5,117.3,113.4,110.5,110.1,69.4$, 58.9, 54.4, 51.4, 33.6, 27.1, 19.9 ppm; IR (mull) $1770 \mathrm{~cm}^{-1}$; MS (EI) m/z $588\left(\mathrm{M}^{+\bullet}\right)$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 77.52 ; \mathrm{H}$, 6.85; N, 4.76. Found: C, 77.55; H, 6.81; N, 4.71.
(4R)-3-\{[(1S,2S,3S)-5-(Dibenzylamino)-1-(dimethylamino)-3-ethyl-2,3-dihydro-1H-inden-2-yl]carbonyl\}-4-phenyl-1,3-oxazolidin-2-one (20a) and (4R)-3-\{[(1R,2S,3S)-5-(Diben-zylamino)-1-(dimethylamino)-3-ethyl-2,3-dihydro-1H-in-den-2-yl]carbonyl \}-4-phenyl-1,3-oxazolidin-2-one (20b). A solution of $9 a^{10 b}(2.033 \mathrm{~g}, 3.92 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$, and titanium tetrachloride ($0.42 \mathrm{~mL}, 3.92$ mmol) was added dropwise. Diisopropylethylamine (0.68 mL , 3.92 mmol) was then added dropwise, and the resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$, and (chloromethylene)dimethylammonium chloride ($0.602 \mathrm{~g}, 4.70 \mathrm{mmol}$) was added over 4 min . The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , quenched with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq}, 150 \mathrm{~mL})$, and extracted with two 150-mL portions of EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated to give 2.663 g of a green-yellow oil. Column chromatography on 225 g of silica gel (elution with 10-30\% EtOAc/hexanes) gave 1.137 g (51\%) of $\mathbf{2 0 a}$ as a white foam and $0.580 \mathrm{~g}(26 \%) \mathbf{2 0 b}$ as a pale green foam. Physical characteristics for 20a: $[\alpha]^{25} \mathrm{D}\left(\mathrm{c} \mathrm{0.9}, \mathrm{CHCl}_{3}\right)$ $-145 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ (dd, J $=1.5,6.6 \mathrm{~Hz}, 2$ H), 7.35-7.21 (m, 13 H$), 7.01(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.57$ (m, 2 H), 5.52 (dd, J $=4.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1$ $\mathrm{H}), 4.72$ (t, J $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 4 \mathrm{H}), 4.28(\mathrm{dd}, \mathrm{J}=4.0,8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.08$ (dd, J $=4.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (ddd, J $=4.2,9.2$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 6 \mathrm{H}), 1.78-1.71$ (m, 1 H), 1.33-1.26 (m, 1 $\mathrm{H}), 0.76(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.9, 153.4, 149.6, 147.0, 139.0, 138.6, 128.5, 128.3, 127.9, 127.7, 126.7, 126.3, 125.8, 111.2, 107.7, 69.9, 69.6, 58.0, 55.1, 54.4, 45.4, 42.0, 27.0, 11.2 ppm ; IR (mull) 1778, $1702 \mathrm{~cm}^{-1}$; UV $\lambda_{\max } 258$ (ϵ 18900, 95\% EtOH); MS (EI) m/z 573 (${ }^{+\bullet}$); HRMS (EI) calcd 573.2991, found 573.2986. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{3}$: $\mathrm{C}, 77.46$; H, 6.85; N, 7.32. Found: C, 77.33; H, 6.92; N, 7.09. Physical characteristics for 20b: $[\alpha]^{25} \mathrm{D}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)-79$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.22(\mathrm{~m}, 15 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 1 \mathrm{H})$, 6.62 (dd, J $=2.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.52$ (dd, J $=3.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(d d, J=8.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-$ $4.58(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 4 \mathrm{H}), 4.40-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{dd}, \mathrm{J}=$ $3.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}), 1.79-1.58$ (m, 2 H), $0.85(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 176.6,153.3,149.6,144.9,138.6,128.9,128.7,128.5$, $126.7,126.3,125.2,112.0,107.0,75.9,69.2,58.0,54.3,50.4,46.0$, $40.6,25.9,10.6 \mathrm{ppm}$; IR (mull) 1776, $1693 \mathrm{~cm}^{-1}$; UV $\lambda_{\max } 258$ (ϵ 18900, 95\% EtOH); MS (EI) m/z 573 (M+•); HRMS (EI) calcd 573.2991, found 573.2985. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 77.46$; H, 6.85; N, 7.32. Found: C, 77.12; H, 6.73; N, 7.06.

Supporting Information Available: Experimental information for compounds 22 (enantiomer of 6), 23 (enantiomer of $\left.1, R_{1}=E t, R_{2}=M e\right), 12 b, c, 14 b, c, 15 b, c, 16 b, 17,18,19$, and 21a,b and X-ray crystal structure of 20a. This material is available free of charge via the Internet at http://pubs.acs.org.

[^0]: ${ }^{\dagger}$ Current address: Glaxo Wellcome, Five Moore Drive, Research Triangle Park, NC 27709. E-mail: krr92858@glaxowellcome.com.
 \ddagger Current address: Central Research Division, Pfizer, Inc., E astern Point Road, Groton, CT 06340
 (1) Heller, H. G. In Aromatic Compounds with Two Fused Carbocyclic Ring Systems: Benzocyclopropene, Benzocycl obutene, and Indene and their Derivatives, 2nd ed.; Correy, S., Ansell, M. F., Eds.; Rodd's Chemistry of Carbon Compounds; Elsevier: Amsterdam, The Netherlands, 1978; Vol. 3, Issue G.
 (2) (a) Liebeskind, L. S.; Gasdaska, J. R.; McCallum, J. S. J. Org. Chem. 1989, 54, 669. (b) Robinson, N. P.; Main, L.; Nicholson, B. K. J . Organomet. Chem. 1989, 364, C37. (c) Cambie, R. C.; Metzler, M. R.; Rutledge, P. S.; Woodgate, P. D. J. Organomet. Chem. 1992, 429, 41.
 (3) (a) Padwa, A.; Blacklock, T. J .; Getman, D.; Hatanaka, N. J . Am. Chem. Soc. 1977, 99, 2344. (b) Semmelhack, M. F.; Ho, S.; Cohen, D.; Steigerwald, M.; Lee, M. C.; Lee, G.; Gilbert, A. M.; Wulff, W. D.; Ball, R. G. J. Am. Chem. Soc. 1994, 116, 7108.
 (4) Gassman, P. G.; Ray, J. A.; Wenthold, P. G.; Mickelson, J. W. J . Org. Chem. 1991, 56, 5143.
 (5) Y amamura, K.; Miyake, H.; Seta, A. Bull. Chem. Soc. J pn. 1986, 59, 3699.
 (6) Singh, G.; Ila, H.; J unjappa, H. Synthesis 1986, 744.
 (7) F or example, see: (a) Weidler, A.-M.; Bergson, G Acta Chem. Scand. 1964, 18, 1483. (b) Hussenius, A.; Matsson, O.; Bergson, G. J . Chem. Soc., Perkin Trans. 2 1989, 851.

[^1]: (14) Seebach, D.; H ungerbühler, E.; Naef, R.; Schnurrenberger, P.; Weidmann, B.; Züger, M. Synthesis 1982, 138.

[^2]: (15) NMR spectra indi cated the diastereomers were epimeric at the C-1 position (NM_{2} substituent). An X-ray crystal structure was obtained of 20a to assign the absolute stereochemistry based on the known configuration of the C-3 ethyl substituent.
 (16) Synthesis and characterization of the enantiomers of compounds 3-5 have been previously described in ref 10 b .

